30 Hour of Code K-8 Activities

Organized by Grade

by Ask a Tech Teacher

30 Hour of Code K-8 Activities

Organized by Grade

<u>Kindergarten</u>

- Online activities
- Misc. coding websites
- Human robot
- Human algorithm

1st Grade

- Online activities
- Misc. coding websites
- Human robot
- Human algorithm

2nd Grade

- Online activities
- Misc. coding websites
- Sequencing
- Animation

<u>3rd Grade</u>

- Online activities
- Coding pixel art
- Misc. coding websites

4th Grade

 Find language-specific symbols

- Using Alt codes
- Programming shortkeys
- Hour of Code lessons
- Misc. coding websites

5th Grade

- Program macros
- Program shortkeys and hotkeys
- Online Hour of Code lessons
- Visit miscellaneous websites

6th Grade

• Build an app

7th Grade

- o Scratch
- Auto Hotkeys
- Wolfram/Alpha

8th Grade

• Alice

6th-8th Grade

SketchUp

Table of Images

Figure 1a-bWhat people think programming is	
Figure 2a-fHuman sequence	
Figure 3a-iHuman algorithm	
Figure 4a-b—What coding looks like	
Figure 5a-b—Kindergarten coding	
Figure 6a-f—Human robot parts	
Figure 7a-i—Human algorithm	
Figure 8a-b: Which is programming?	
Figure 9a—Kodable; 9b—Hopscotch; 9c—Tynker	
Figure 10a-c: Correct sequence	
Figure 11a-c—Stick figure animation	Error! Bookmark not defined.
Figure 12a-b—Coding	Error! Bookmark not defined.
Figure 13a-d—Coding in K-2	Error! Bookmark not defined.
Figure 14a-c Pixel art	Error! Bookmark not defined.
Figure 15a-c—K/1 Spreadsheet drawings	Error! Bookmark not defined.
Figure 16Thinking hard poster	Error! Bookmark not defined.
Figure 17a-b—Programming	Error! Bookmark not defined.
Figures 18a-d—Coding in K through 3rd grade	Error! Bookmark not defined.
Figure 19—Popular unusual shortkeys	Error! Bookmark not defined.
Figure 20—Create a shortkey	Error! Bookmark not defined.
Figure 21a-b—What programming feels like vs. what it is	Error! Bookmark not defined.
Figure 22a-d—Coding from previous years	Error! Bookmark not defined.
Figure 23—How to create a macro	Error! Bookmark not defined.
Figure 24—How to create a shortkey	Error! Bookmark not defined.
Figure 25a-b—What programming feels like vs. what it is	Error! Bookmark not defined.
Figure 26a-e—Coding from previous years	Error! Bookmark not defined.
Figure 27a-bWhat programming feels like vs. what it is	Error! Bookmark not defined.
Figure 28a-e—Coding from previous years	Error! Bookmark not defined.
Figure 29—Scratch program page	Error! Bookmark not defined.
Figure 30a-b—Scratch script and result	Error! Bookmark not defined.
Figure 31—Scratch tools I	
Figure 32—Scratch tools II	Error! Bookmark not defined.
Figure 33a-b—Scratch remix	
Figure 34a-d—Scratch projects	Error! Bookmark not defined.
Figure 35—Scratch embed	Error! Bookmark not defined.
Figure 36a-b—Blogs about programming	Error! Bookmark not defined.
Figure 37—Scratch rubric	
Figure 38—Wolfram/Alpha widget	
Figure 39a-b—Wolfram/Alpha completed widget; 39c—embedded in blog	
Figure 40a-bClass using Alice	
Figure 41aStudent using Alice; 41b—first world	
Figure 42a—Make sense of problems; 42b—reason abstractly	
Figure 43—Construct viable arguments (in Alice)	
Figure 44a—The model; 44b—the result in Alice	
Figure 45—Use appropriate tools (Alice)	
Figure 46a—Attend to precision (in Alice); 46b—look for and express regularity	
Figure 47a-b—Alice programming	
Figure 48a-cMath programming in Alice	

Hour of Code—30 Activities for K-8

Figure 49—Alice rubric	Error! Bookmark not defined.
Figure 50a-c—Designs from SketchUp Warehouse	Error! Bookmark not defined.
Figure 51a-d—Geometric shapes in SketchUp	Error! Bookmark not defined.
Figure 52—House in SketchUp	Error! Bookmark not defined.
Figure 53a-b: Which is real? Which is SketchUp?	Error! Bookmark not defined.
Figure 54a—Icosahedron in SketchUp; 54b—building on campus	Error! Bookmark not defined.
Figure 55a—Ancient Rome; 55b—molecules; 55c—math shapes	Error! Bookmark not defined.

Second Grade—Four Activities

Vocabulary	Problem solving	Skills
 animation 	 I don't know how to use the 	New
• coding	programming tool (experiment; be a	Coding/programming
• debug	risk-taker)	Animation
Hour of code	 I don't like coding (why?) 	Screenshots
Programming	 My partner does lots of the work 	
 screenshot 	(that's OK if you do your part)	<u>Scaffolded</u>
 sequence 	 I couldn't debug my program (start 	Problem solving
 symbolism 	at the beginning)	
Academic Applications	Materials Required	<u>Standards</u>
Math, critical thinking, habits	Coding links, membership in onsite program	CCSS Stds for Math. Practice
of the mind	(i.e., Code.org)	NETS: 4b, 6c

Essential Question

How do I use a program I've never seen before?

Big Idea

By thinking critically, I can create something new and useful.

Teacher Preparation

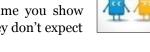
- Have all coding/programming tools ready to use.
- Talk with grade-level team so you tie into conversations.
- Know which tasks weren't completed last week and whether they are necessary to move forward.
- Integrate domain-specific tech vocabulary into lesson.
- Try to get additional time—at least 75 minutes—with each class to complete the activities.

Assessment Strategies

- Followed directions
- Anecdotal observations
- Joined class conversations
- [tried to] solve own problems
- Worked well with a partner
- Made decisions that followed class rules
- Left room as s/he found it
- Higher order thinking: analysis, evaluation, synthesis
- Habits of mind observed

Steps

_____Discuss critical thinking and problem solving. Does this apply to, say, Minecraft?
 _____The reasons educators embrace coding are simple: It teaches children to think. Discuss fundamental programming concepts:


- **abstraction and symbolism**-variables are common in math, but also in a student's education. Tools, toolbars, images-these all represent something bigger. See this post on the <u>symbolism of the word 'Turkey' (http://wp.me/pZUgb-2wS).</u>
- **creativity**-think outside the box; develop solutions no one else has
- **debugging**-write-edit-rewrite; when you make a mistake, don't give up or call for an expert. Look at what happened and fix where it went wrong.
- if-then thinking-actions have consequences
- **logic**-go through a problem from A to Z, understand the predictability of movements
- **sequencing**-know what happens when; mentioned in CCSS for grades 1 through 5

_Share this with students and get their thoughts:

"In 1997, the New York Times reported, 'It may be a hundred years before a computer beats humans at Go.' It took 16 years."

December will host the **Hour of Code**, a one hour introduction to coding, programming, and why students should love it. It's designed to demystify code and show that anyone can learn to be a maker, a creator, and an innovator.

Coding is a great tie-in to Common Core Math Standards. Any time you show students how to use math skills outside of math, it surprises them. They don't expect a discussion on problem solving or modeling to come from math.

Review the Common Core Standards for Mathematical Practice. If you are not a Common Core school, review the similar guidelines from your Standards:

- CCSS.Math.Practice.MP2 • Reason abstractly and quantitatively
- CCSS.Math.Practice.MP3 Construct viable arguments; critique reasoning of others
- CCSS.Math.Practice.MP4 • Model with mathematics
- CCSS.Math.Practice.MP5 Use appropriate tools strategically
- CCSS.Math.Practice.MP6 • Attend to precision
- CCSS.Math.Practice.MP7 Look for and make use of structure
- CCSS.Math.Practice.MP8 Look for and express regularity in repeated reasoning

Most students think programming looks like *Figure 8a* when it actually looks like *Figure 8b*:

Figure 1a-b: Which is programming?

Do students remember coding activities from previous years—Figures 9a-c:

Hour of Code—30 Activities for K-8

Figure 2a—Kodable; 9b—Hopscotch; 9c—Tynker

____This lesson presents four approaches to coding. Pick one that works for your student group:

- Hour of Code lessons
- miscellaneous coding websites
- sequencing
- animation

_____These can be done individually or in small groups. They may be done any time during the school year.

Follow one of the free online Hour of Code programs

_____Websites like <u>Code.org</u> (Google for web address) offer full lesson plans for Hour of Code. This is the easiest way to get involved in programming as they do all the planning for you. This may be exactly what you need. _____Before starting, review digital citizenship–especially privacy.

Miscellaneous coding websites

_____Here are some great coding/programming websites 2nd graders find exciting:

- <u>Build with Chrome</u>
 <u>https://www.buildwithchrome.com/</u>
- <u>Minecraft</u> <u>http://minecraftedu.com/</u>
 ScratchJr.
- http://www.scratchjr.org/
- <u>Tinkercad</u>-3D modeling-fee-perfect for 3D printing <u>https://www.tinkercad.com/</u>

73

_____Here's a list of <u>coding websites</u>, by grade level (<u>http://bit.ly/1TbyCIa</u>). _____Here are apps that take coding to iPads if you're a 1:1 iPad school:

- <u>App Inventor</u>-build Android apps on a smartphones <u>http://appinventor.mit.edu/explore/</u>
- <u>Cargo-Bot</u>—logic iPad game <u>https://itunes.apple.com/us/app/cargo-bot/id519690804?mt=8</u>
- <u>Hopscotch (for up to intermediate-more complicated than Kodable)</u> <u>https://itunes.apple.com/ca/app/hopscotch-coding-for-kids/id617098629?mt=8</u>

- <u>Kodable</u>
 <u>https://www.kodable.com/</u>
 T____l
- <u>Tynker</u> <u>https://www.tynker.com/</u>

Here are more <u>coding/programming apps</u> that might be exactly what you're looking for (<u>http://bit.ly/1MW58OA</u>).

_____For an in-depth discussion on three iPad programming apps, read the article at the end of the Lesson, *Want to Code on an IPad? Here are 3 Great Apps*.

Sequencing

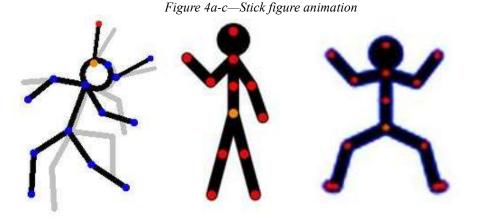

Create a series of sequenced activities using slides that students must rearrange. These can be simple or involved, and might tie into inquiry taking place in the classroom. For example, enter life cycle slides into a slideshow tool like PowerPoint or Google Slides, share with students, and have them arrange in the correct order. In *Figures 10a-c*, what's the correct order for the slides? _____This can be done as a class or in small groups.

Figure 3a-c: Correct sequence

Animation

<u>Use a free program like Pivot Stick Figure Animator</u> (<u>http://bit.ly/1IwbAXt</u>) to program a stick figure. It's simple to use and students love exploring the possibilities of making their own creative animated stories.

_In *Figures 11b-c,* the red dots show places where the figure can be bent. Each frame, students

make a minor adjustment to the figure. By the time they finish and play the animation, the figure appears to be moving.

____Pivot Stick Figure is a downloaded program. If you have IPads, try <u>Stick Nodes</u> (<u>https://apple.co/1fB6D7H</u>) or <u>Scribble Movie</u> (<u>http://apple.co/1MSxBD1</u>). If you use Chromebooks, try one of the other Coding options.

_____Save a screenshot (explain why this will not save the animation) to digital portfolios with student last name and project name. Here are options, depending upon your digital device:

- Windows: Snipping Tool
- Chromebook: hold down control key and press window switcher key
- Mac: Command Shift 3 for a full screenshot; Command Shift 4 for partial
- Surface tablet: hold down volume and Windows button
- *iPad*: hold Home button and power button at same time
- **Online**: a screenshot tool like Jing, Nimbus, or Snagit

_____Throughout class, check for understanding.

Class exit ticket: None

Third Grade—Three Activities

Vocabulary	Problem solving	Skills
 cells coding debug Hour of code pixel art programming sequence 	 I don't know how to use the programming tool (experiment; be a risk-taker) I don't like coding (why?) My partner does lots of the work (that's OK if you do your part) I couldn't debug my program 	<u>New</u> Coding/programming <u>Scaffolded</u> Problem solving
symbolism Academic Applications	(start at the beginning) Materials Required	Standards
Math, critical thinking, habits of the mind		CCSS Standards for Math. Practice NETS: 4b, 6c

Essential Question

How do I use a program I've never seen before?

Big Idea

By thinking critically, I can create something new and useful.

Teacher Preparation

- Talk with grade-level team so you tie into inquiry.
- If you're a lab teacher, arrange with stakeholders to extend lesson to one hour and fifteen minutes, to accommodate the nation-wide Hour of Code.
- Integrate domain-specific tech vocabulary into lesson.
- If you offer afterschool tech help and it's manned by students, verify they will be there.

Steps

Time required:15 minutes to discuss problem solving, critical thinking, coding. 60
minutes to pursue hands-on coding (1 hour and 15 minutes preferred).Class warm-up:None

_____Because this is one hour devoted to coding, skip presentations and Evidence Board.

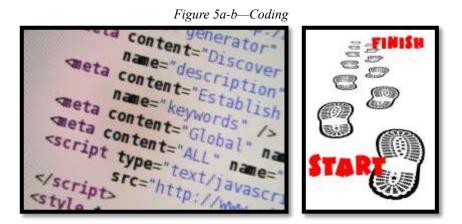
_____Discuss critical thinking and problem solving. Does this apply to, say, Minecraft?

- _____The reasons educators embrace coding are simple: **It teaches children to think.** Discuss fundamental programming concepts:
 - abstraction and symbolism-variables are common in math, but also in a student's education. Tools, toolbars, images-these all represent something bigger. See this post on the <u>symbolism of the word 'Turkey' (http://wp.me/pZUgb-2wS).</u>
 - creativity-think outside the box; develop solutions no one else has
 - debugging-write-edit-rewrite; problem-solve; when you make a mistake, you don't throw your hands into the air or call for an expert. You look at what happened step by step and fix where it went wrong. Students should do the same.
 - if-then thinking-actions have consequences
 - logic-go through a problem from A to Z, understand the predictability of movements

Assessment Strategies

- Anecdotal
- Completed exit ticket
- Worked well with partner
- Completed one hour of coding
- Joined classroom conversations
- Higher order thinking: analysis, evaluation, synthesis
- Habits of mind observed

• sequencing–know what happens when; mentioned in CCSS for grades 1 through 5


____Share this with students and get their thoughts:

"In 1997, the New York Times reported, 'It may be a hundred years before a computer beats humans at Go.' It took 16 years."

_____December will host the **Hour of Code**, a one hour introduction to coding, programming, and why students should love it. It's designed to demystify code and show that anyone can learn to be a maker, a creator, and an innovator. _____This unit may be done individually or in small groups. It may be done any time during the school year.

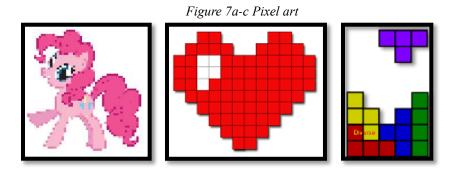
_____Most students think programming looks like *Figure 12a* when it actually looks like *Figure 12b*:

_Do students remember coding activities from previous years—*Figures 13a-d:*

Figure 6a-d—Coding in K-2

_____This lesson presents three approaches. Pick one that works for your student group:

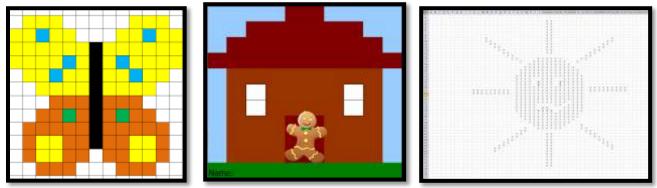
- Hour of Code lessons
- Coding Pixel Art
- Miscellaneous coding websites


Follow one of the free online Hour of Code programs

_____Websites like <u>Code.org</u> (Google for web address) offer full lesson plans for Hour of Code. This is the easiest way to get involved in programming as they do all the planning for you. This may be exactly what you need.

_____Before starting, review digital citizenship–especially privacy.


Coding Pixel Art


_____Pixel Art is the blocky drawing done, ala Minecraft. *Figures 14a-c* are examples:

- stair-step edges
- limited colors
- usually a focal centerpiece

_____Gamers used pixelated art long before Minecraft in the popular Tetris (*Figure 14c*). _____If you follow the Structured Learning Technology Curriculum, students have made pixel art in kindergarten and 1st grade (*Figures 15a-c*):

Next pages intentionally deleted

7th Grade: Scratch, AutoHotkeys, Wolfram/Alpha

Vocabulary	Problem solving	Homework
 Background 	 I can't understand how to *** 	Preview programming
 Blocks 	(Check resources, Help files,	tool students will use in
 Broadcast 	neighbors before asking teacher)	this lesson
Control	 I can't remember how I *** (check 	
Costume	scripts where you did this before)	Add a blog post
• Debug	 I don't understand how to use a tool 	about the coding
 Hotkeys 	(right click and select 'help')	activity student would
 Motion 	 How do I know where scripts are 	like to try. Include
 Operators 	(experiment)	evidence.
• Remix	 How do I do basic skills (try Scratch 	
 Script 	Task Cards)	Review preparatory
• Sequence	 Is Scratch a drawing program or a 	material
• Sprite	presentation tool?	
• Stage	 Can I use someone's script (that's 	
 Variables 	<pre>'remixing'—Scratch encourages it)</pre>	
 Widget 	 I just don't get it (see if you can try 	
 Wolfram-Alpha 	another lesson option)	
Academic Applications Math, critical thinking, problem solving	Skills Required Familiarity with problem solving, digital citizenship, keyboarding, programming	<u>Standards</u> CCSS: Math.Practice.MP NETS: 3b, 4b

Essential Question

How can math be creative and collaborative?

Big Idea

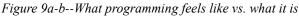
I can learn mathematical ideas while thinking creatively

Teacher Preparation/Materials Required

- Have scratch program on digital devices. •
- Have lesson materials online to preview. •
- Ensure required links are on student digital devices.
- Ask what tech problems students had difficulty with.
- Integrate domain-specific vocabulary into lesson.
- Go to ScratchEd for tutorials, rubrics, assessments and more: http://scratched.media.mit.edu/.

Assessment Strategies

- Created sprite
- Completed project
 - Posted blog article about Scratch (with screenshot) and commented on classmate's
- Completed warm-up, exit ticket •
- Joined classroom conversations
- [tried to] solve own problems
- Decisions followed class rules
- Left room as s/he found it
- Higher order thinking: analysis, • evaluation, synthesis
- Habits of mind observed
- Talk with subject teachers about inquiry Scratch can support.


Steps

360 minutes

Time required: Class warm-up: Keyboarding on the class typing program, paying attention to posture _Homework listed on this lesson will be assigned the week before you start this unit—so students are prepared for the flipped classroom.

- _Any questions from preparatory homework? Expect students to review upcoming unit and come to class with questions.
- <u>'Programming'</u> is the buzzword among middle school students. They either want to do it, or are afraid of it. What does it mean? Who has their own website or blog? Who wants to write programs and/or apps? If they tried, what did they use? Discuss how these activities promote problem-solving, critical thinking, and computational thought.
 - __Most people—students and adults—think programming looks like *Figure 27a* when it actually looks like *Figure 27b*:

Do students remember coding activities from previous years (Figures 28a-e)?

Figure 10a-e—Coding from previous years

_December will host <u>Hour of Code</u> (<u>http://code.org</u>), a one hour introduction to programming and why students should love it. It's designed to demystify "code" and show that anyone can learn to be a maker, a creator, and an innovator.

_What is <u>Scratch (https://scratch.mit.edu/):</u> *A free download from MIT designed to teach prehigh school students programming basics without the techie-ness. With it, students create interactive stories, animations, games, and/or music.*

_Whether you're a Common Core school or not, these eight constructs from <u>Standards for</u> <u>Mathematical Practice</u> regarding critical thinking tie flawlessly into Scratch programming:

• Make sense of problems and persevere in solving them—Students must understand where they made a programming error and fix it.

- Reason abstractly and quantitatively—Visualizing coding requires an abstract understanding of what is occurring.
- Construct viable arguments and critique the reasoning of others—Coding and remixing requires students critique others' work.
- Model with mathematics—Translate available scripts to student needs, not unlike decoding a formula in mathematics.
- Use appropriate tools strategically—Coding offers a plethora of tools. The trick is to adapt strategically to student needs.
- Attend to precision—To get scripts to do what students want requires precision

- Look for and make use of structure—look at available tools, scripts, blocks, options, in selecting those which facilitate student needs
- Look for and express regularity in repeated reasoning—notice when a formula/program/script accomplishes goals.

_____This lesson has three activities:

- Scratch
- Auto Hotkeys
- Wolfram/Alpha widgets

Scratch

_____Students work in groups. This is a self-paced student-directed unit. Provide a quick overview. In fact, after your screen tour, students will know 90% of what is required to complete the project. As you present, encourage students to listen for the following:

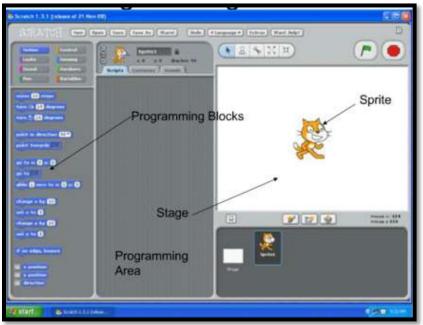
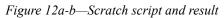



Figure 11—Scratch program page

- What is background and how is it edited?
- What is broadcasting?
- How does one build/edit a sprite, make it glide?
- How does one add dialogue and recordings?
- How does a sprite move forward/backward and/or flip?
- How does one automate movement?
- How does one wait (under control)?

Open Scratch on class screen. Point out:

- top toolbar with tools to save/share projects
- toolbar above stage where students duplicate/delete/grow/shrink their Sprite
- small stage, full stage, presentation mode tools
- how to connect and activate scripts
- three ways to create a Sprite and add costumes
- blocks—scripts that change with options
- control options
- green flag to automate scripts
- programming categories (motion, looks, sound, etc.)-demonstrate each
- drop-down menus available on some blocks/scripts
- tabs for sprites/backgrounds that change depending upon which you're in

_____Take questions, but remember: You aren't teaching. You're introducing. Students are explorers and risk-takers in this project.

_Provide a list of resources to help students find answers, like these (click the link and scroll down to Scratch): <u>http://bit.ly/1knJOax</u>.

Before you help, students must try to solve their own problem. Here are strategies:

- check resource list
- check Scratch website Task cards
- right-click on a tool and select 'help'
- check with a neighbor
- check Help (with Scratch's website)

merve 10 steps		Scripts O		
turn (* 11) degrees turn P) 11) degrees peart in direction (55)	If these steps/ degrees	Modee Luces Osund Pen Tutta	Evente Control Durnalno Operations More Blocks	Use preset scripts to
pent temants	direction don't work		degram	program or create your own
an tar minterprotect an tar minterprotect affer a second an affi yi da		point in dree		your own

Figure 13—Scratch tools I

___Give students time to view resource list and Task cards, experiment with tools, explore functions before beginning project.

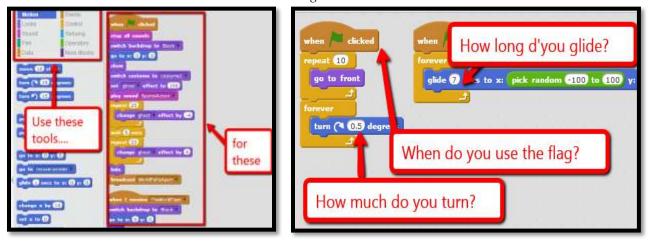
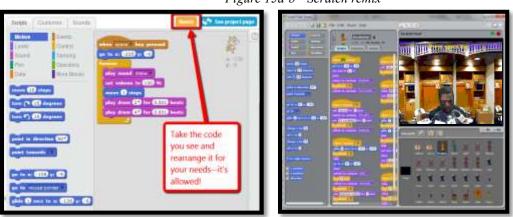
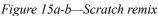




Figure 14—Scratch tools II

____When students have practiced skills, have them create an account on Scratch and download a project from another 7th grader (at <u>http://scratch.mit.edu/latest/shared</u>, search '7th grade'). Find a topic similar to one they will create. Explore how this student accomplished tasks; remix to suit project needs, then save remix to student portfolio (*Figures 33a-b*).

Next pages intentionally deleted

Code a Widget with Wolfram/Alpha

_____Widgets are free, personalized mini-apps that can do almost anything the user can program, from calculating the calories in a recipe to solving complex problems. Students can browse Wolfram/Alpha's gallery for a widget that fits their need and embed the code into their personal website, or build their own widget from scratch using the Builder tool. The level of difficulty will determine how long it takes so start simple during Hour of Code.

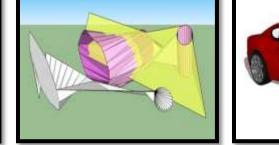
1. IS ANY TEMPLATE	A.WARRETLATING	S. BRITISH CONTRACT	4. COMPLET THE		\$ DETTNE	isi (
United weget			storios Urgaditated	(Creater)	Million .	(page 1	-
Build your query templa	*						
Cel Sarad	Webe	Status Georg					
Tru a recthars/Apric Cash Branca Maria Cash Branca Maria Cash Branca Maria Cash Signigri Dire para Annya Mariana Annya Signigri Dire para Annya	u sartu tas Lases	Formation Weitfram (Allphian quartery					
2 In the next sheep work of a most sheep the part of a most sheep the sheep							

Figure 16—Wolfram/Alpha widget

_Here's an example students can easily create to determine their grade (*Figures 39a-b*): *Figure 17a-b—Wolfram/Alpha completed widget; 39c—embedded in blog*

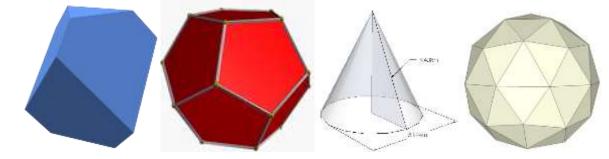
ford has you get in	while a period lage of [20] and of [21]	1 to the
Veset hav many points yourgot	Sec.	~ / v p ~ v p R R
what is parameters of	Total comprehense 20 35	Widget to Calculate My Grade
	and .	Presenting galaxy or forwards 12 2021
winess en prints	20 ++926 (00% increase)	and all and all all all all all all all all all al
Petr Sahni.		

_____Using the Wolfram Alpha embed code, add this to the student blog (*Figure 39c*):


Next pages intentionally deleted

Next pages intentionally deleted

- _____Unit is student directed. Expect them to learn by exploring, sharing knowledge. Show this video of 2nd grader teaching SketchUp to classmates (<u>http://www.youtube.com/watch?v=lahdM5v1fsw</u>).
 - ____If you'd like: Have students go through this <u>twenty-eight video Getting Started</u> series: <u>http://www.sketchup.com/intl/en/training/videos/new_to_gsu.html.</u>
 - Alternatively, try *How-to SketchUp* (*http://www.aidanchopra.com/web-content*).
- _____Note: Video links change. You can find your own resources by searching YouTube, <u>SchoolTube</u>, <u>Woopid</u>, or similar (Google for addresses).
- Open SketchUp. Students browse online documentation and videos. Encourage them to think back to the videos they watched for homework and in class when they have a question. Replay those videos as needed to be self-directed and self-motivated in this lesson.
 - ____Introduce the <u>SketchUp Warehouse</u>. Browse to see what has been created (see *Figures 50a-c*).


Figure 18a-c—Designs from SketchUp Warehouse

___Next: In groups, create several 3D geometric shapes like *Figures 51a-d* (from SketchUp Warehouse):

Figure 19a-d—Geometric shapes in SketchUp

_Next: In groups, create a building to scale (*Figure 52*):

__Start by watching this video: <u>http://bit.ly/1YmNsQy.</u> __Next: Students will complete one of the following tasks that integrate SketchUp with

math, geography and science:

• Find a SketchUp of a real building in the warehouse. Try to reproduce it. Then, compare your design to pros. In Figures 53a-b, which is real and which is SketchUp:

Figure 21a-b: Which is real? Which is SketchUp?

- Create an icosahedron (see <u>https://youtu.be/Kz3OpsgDiz0</u>) like Fig. 54a:
- Design a building on your campus and upload to Google Earth (or Warehouse). Do you recognize Figure 54b—Eliot School in St. Louis Missouri (from warehouse)?

Next pages intentionally deleted

More Themed Bundles of Lessons from Structured Learning

- <u>Art</u>
- Coding
- <u>Common Core</u>
- Geography
- <u>Google Earth</u>
- <u>History</u>
- Inquiry
- Language Arts
- <u>Math</u>
- Problem Solving
- <u>Writing</u>